NARCC Technical Committee

Revisiting Coordination Issues And Tech Specs

Feb 2014 – Condensed for broad consumption – 05-10-2017 de No1PC

Coordination Considerations

- "Best practice"
 - "Good equipment"
 - Frequency stability
 - CTCSS/DCS input and output
 - Minimal power/coverage area to maintain reasonable communication (not S-1, not S-2, no marginal spots...)
 - Within occupied bandwidth/emission mask
 - Contain your audio spectrum and deviation
- **47CFR97.305**: "the mean power of any spurious... between 30-225 Mhz must be at least 60dB below the mean power of the fundamental"

Technical Guidelines

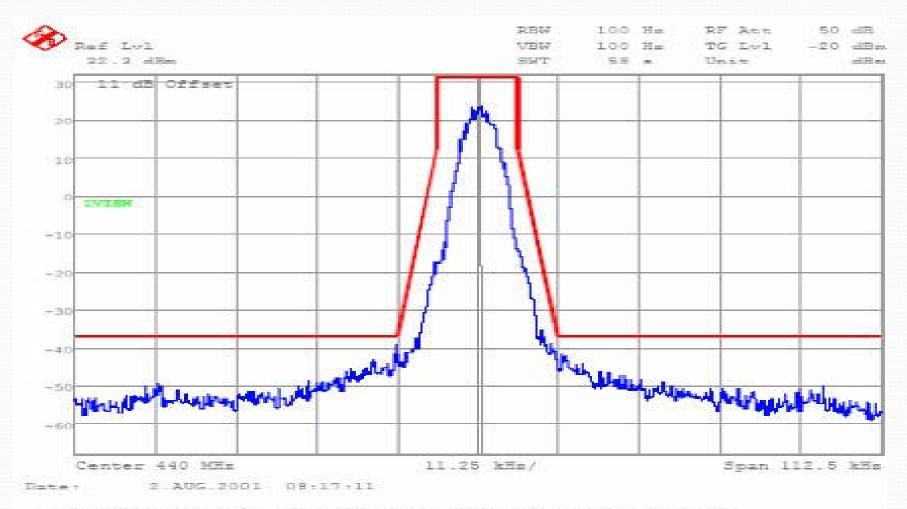
- Technical Considerations
- Current Technical Guidelines
- Possible Technical Guidelines
- Emission Masks / Occupied Bandwidth
- Deviation Options for Analog
- Frequency Stability and Impact
- Coverage Area and Signal Levels
- Surveying Technical Preferences

Benefits of Technical Guides

- Less ambiguous considerations for coordination
- Promote technical and amateur radio best practices, especially critical in a crowded environment
- Understand and improve transmitted and received signal characteristics/system performance
- Prevent issues and mitigate as needed
 - Non-, nuisance-, harmful- interference
 - Government regulations and circumstances
- Accommodate new technologies without compromising existing
- You demand we do a better job, which requires better information, guidelines and cooperation.

Where Do Guidelines Come From?

- We didn't make this up: science, math and physics
- Comm. Act/Part 97: not updated to current technologies and <u>expectations</u> – we need something
- Part 90 and 95
 - Commercial service is how we got here...
 - Many hams were pioneers in commercial services
- TSB-88 broad coverage analog and digital specs
- Expected "service quality" by users

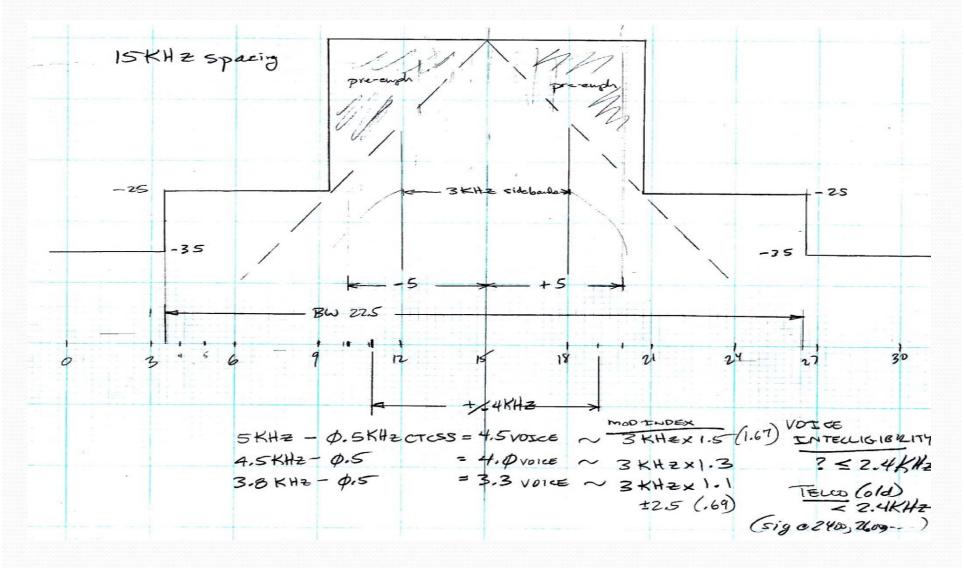

Possible Technical Guidelines

- Deviation / Occupied Bandwidth / Emission Mask
 - "the box" your signal should stay within
 - Spurious, sidebands (all modes have this to some extent)
 - Guard-band / channel edges
 - Affects adjacent channel spillover
- Frequency stability / tolerance
 - Keeping "the box" in its place
 - Emission may be in "the box" but the box should not shift
- Coverage Area

Emission Mask

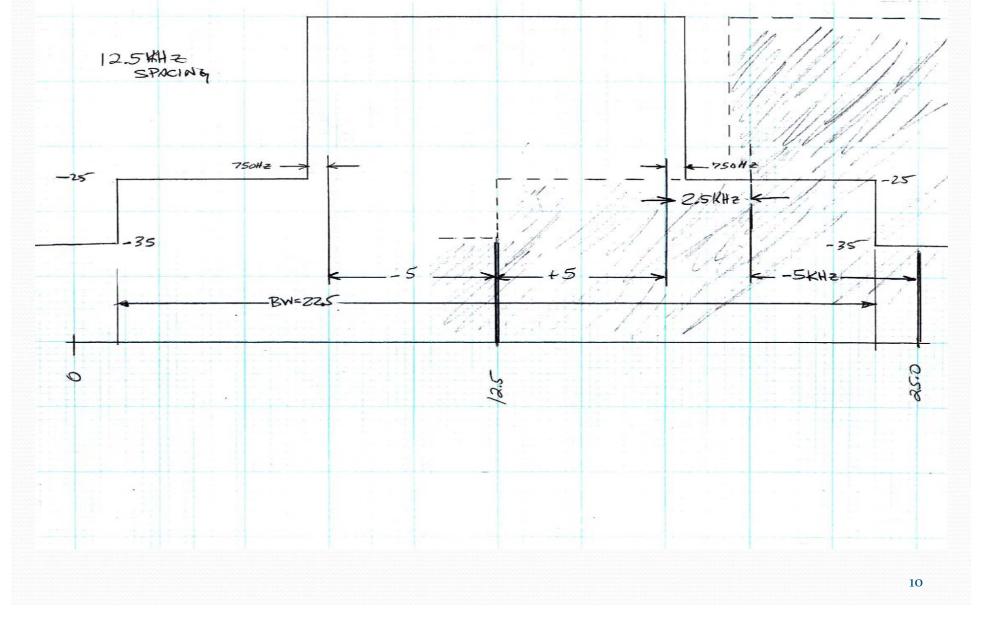
- One way to represent emission mask is occupied bandwidth (excerpt from NIST presentation):
- "Occupied bandwidth is the portion of the spectrum which contains 99% of the emitted energy (.5% of the remaining is above and .5% is below the occupied bandwidth)
- Establish a box/fence put whatever you want in it (FM, DMR, Fusion, NXDN, P25) but stay in it.
- The risks of uncontrolled emissions and box 'position' are nuisance-to-harmful interference (i.e., *not* exercising best practice)

Emission Mask - Example

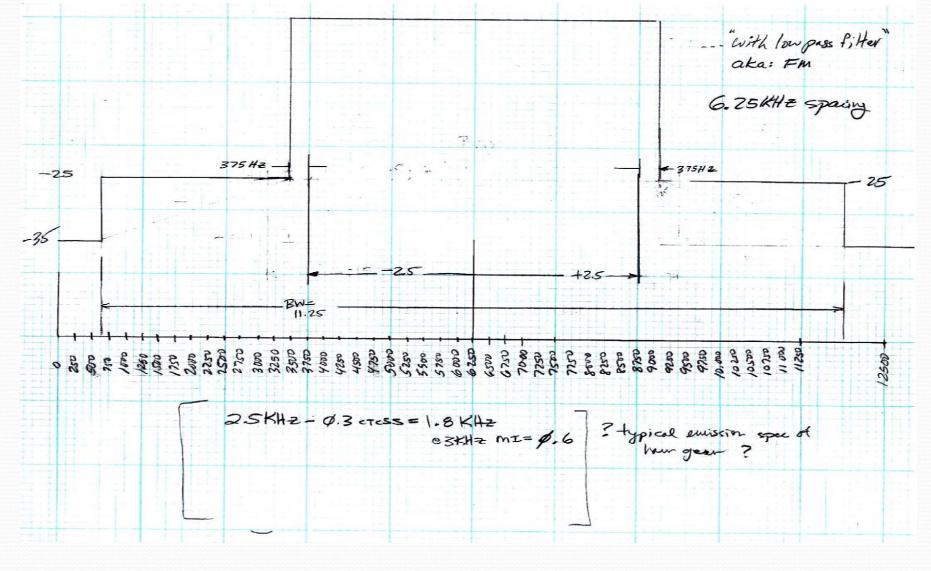

measured with normal Test modulation : Pseudo random data stream max. SkBit/s

100	11.7%	£	1.1	160
<u>, 1997</u>	10.00	<u> 111</u>	8. B	100

SUBCLAUSE § 90.210


Emission Mask D - 12.5 kHz channel bandwidth

Emission Masks – 15 KHz



9

Emission Masks – 12.5 KHz Spacing

Emission Masks – 6.25 KHz Spacing

11

Deviation Options

Voice Dev.	CTCSS / DCS Dev	Max Dev	High Voice Freq	Mod Index	High Voice Freq	Mod Index
5.0	<i>0.5</i>	5.5	3.0	1.67	2.4	2.08
4.5	0.5	5.0	3.0	1.50	2.4	1.88
4	0.4	4.4	3.0	1.33	2.4	1.67
3.8	0.4	4.2	3.0	1.27	2.4	1.58
3.5	0.5	4.0	3.0	1.17	2.4	1.46
3.5	0.3	3.8	3.0	1.17	2.4	1.46
3.3	0.5	3.8	3.0	1.10	2.4	1.38
3	0.3	3.3	3.0	1.00	2.4	1.25
2.5	0.3	2.8	3.0	0.83	2.4	1.04
2.25	0.25	2.5	3.0	0.75	2.4	0.94

Frequency Stability

<u>Stability</u>	Low Limit	<u>On-Channel</u>	<u>High Limit</u>	Drift
2.5 PPM	146.51963	146.52000	146.52037	+/-370 Hz
0.00025%				
	444.99889	445.00000	445.00111	+/-1.1 KHz
5 PPM	146.51927	146.52000	146.52073	+/-730 Hz
0.0005%				
	444.99778	445.00000	445.00223	+/-2.2 KHz
10 PPM	146.51853	146.52000	146.52147	+/-1.47KHz
0.001%				
	444.99555	445.00000	445.00445	+/-4.5 KHz
				12

Frequency Stability Impact

- Protective deviation/channel edge for +/- 5KHz deviation is 750 Hz
- Guard-band of dev-edge to dev-edge is 2.5 KHz
- 5 and 10 ppm stability can cause co-channels to overlap if they drift toward each other
- Splatter/sidebands can exceed "the box" and result in nuisance or harmful interference
- 2.5 ppm stability reduces/eliminates overlap, retains adjacent channel protection
- Base/repeater TX stability is always regarded more important than mobile/portables

Signal Levels

Desired/Intended Coverage vs. 'Interference'

S-reading	<u>μV (50Ω)</u>	<u>dBm</u>	<u>dB above 1uV</u>
S9+10dB	160.0	-63	44
S 9	50.2	-73	34
S 8	25.1	-79	28
S7	12.6	-85	22
S6	6.3	-91	16
S 5	3.2	-97	10
S4	1.6	-103	4
S 3	0.8	-109	-2
S2	0.4	-115	-8
S1	0.2	-121	-14

Signal Levels

- Average ham mobile for general reference:
 - 0.1-0.16 uV (S1) to open squelch (what's your squelch level?)
 - 0.2-0.3 uV 12 dB quieting / 0.3-0.5uV 20 dB quieting
- -100 dBm (3.0uV) is clearly and S4 to S5 signal level
 - May be deemed as interference
- -105 dBm (1.8uV) is clearly high S3 to S4 signal
 - May be deemed as interference
- -110 dBm (0.8uV) is high S2-S3 signal
 - May be obvious nuisance interference (beat note, squelch sputter)
- -115 dBm (o.4uV) is S2 signal
 - May be nuisance interference (beat note, squelch sputter)
- -120 dBm (0.2uV) is S1 signal level
 - Noise level, some squelch sputter possible

- When is S-x / -xyz dBm signal really nuisance or harmful interference?
- How do you characterize / measure it?
- How big is the affected area to be considered nuisance vs. harmful interference?
 - 1 square meter
 - 1 acre
 - 1 square mile
 - 5 square miles
 - City? County ? NARCC 'region' ?

Define 'nuisance' interference

- Below the capture ratio/effect (harmful) level !!
 - Harmful: where it becomes >X% difficult to 100% impossible to effectively extract meaningful communication content.
- How much beat/heterodyne effect is tolerable?
 - -30 dB audible level difference from clear communications
 - -20 dB audible level difference from clear communications
 - -10 dB audible level difference from clear communications
 - At what level do those symptoms appear for your receiver?
- Mitigate
 - CTCSS/DCS
 - Use RF squelch setting if available in user radio (S2?)

Define 'harmful' interference

- Above the capture ratio/effect level !!
- Where it becomes >X% difficult to 100% impossible to effectively extract meaningful communication content.
- What is the capture ratio for your receiver?

"The Number":

Somewhere between the [harmful interference/capture level] and [(some degree of nuisance interference level) for (y-minimum-nuisance-area)] is "a number"

Find 'x' (clue: it is not on this page)

TX Frequency Accuracy

- Analog or digital (D-Star, P25, DMR, etc.)
- Stability not readily measurable but offfrequency condition is. Criteria is whether fundamental is on-frequency within:
- 2.5 PPM @ 15KHz spacing or less
- 5 PPM @ 20KHz spacing

Coverage/Service Area

- -110 dBm ~ S3
- -115 dBm ~ S2-S3
- -120 dBm ~ S1-S2
- Optional cooperative overlap allowed if cochannel agreement – to a degree/level agreed by both. (Capture effect typically negates nuisance interference.)

Radio Service Comparisons

- http://utahvhfs.org/dstar_testing.html
- <u>http://utahvhfs.org/dstar_channel_spacing.html</u>
 - Analysis of D-Star's "non-digital" transmission and effect on bandwidth
 - Note D-Star's modulation frequency is 4800 Hz, 1800 Hz > conventional voice FM
 - D-Star is *NOT* a "narrow-band" technology as compared to +/- 2.5 KHz FM voice, P25, etc.
- <u>https://www.icomamerica.com/en/landmobile/6.25FDMAI</u> <u>nfo_707.pdf</u>
 - Icom info on FDMA/P25